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1 Introduction 
Mapping the distribution of species and vegetation types in coastal wetlands has become important because of the 
need for wetland inventories and their biodiversity (Finlayson et al., 1999; Phinn and Finlayson, 1999). Vegetation 
is also regarded as a bio-indicator of site conditions and it is therefore important to understand changes in its 
distribution and the process acting upon it (Küchler, 1988; Blasco et al., 1996; Muller, 1997; Klemas, 2001). 
Mapping methods need to be efficient and cost effective (Mumby et al., 1999) with satellite remote sensing systems 
having been used extensively for mapping the distribution of vegetation types in coastal wetlands and other 
environments (Gross et al., 1989; Phinn et al., 1999).  The detection of vegetation types will depend directly on the 
sampling unit used by the sensor (pixel) and the area imaged. The signal recorded for each pixel is composed of a 
mixture of components that characterize each community, including the species, canopy openness, height and 
substrate. Broad-band multispectral imagery is usually analyzed using methods that classify whole pixels using 
limited spectral information (Vane and Goetz, 1993), which do not account for the problem of mixed pixels. The 
discrimination of vegetation types using satellite-borne sensors is usually based on the structure (height, openness) 
and broad vegetation categories (such as woody, perennial, evergreen) (Lewis, 1999; Holmgren and Thuresson, 
1998). A common criticism of satellite remote sensing is its inability to define features of interest that are related to 
ecological processes because of the crude spectral and spatial dimensions of the images (Rougharden et al., 1991; 
Holmgren and Thuresson, 1998). Advantages of higher spectral resolution imagery include the acquisition of 
detailed spectral information of the features on the ground (Ustin et al., 1991) and the possibility of image analysis 
procedures that aim to detect target spectra at a sub-pixel level (Curran, 1994; Clark, 1999; Mustard and Sunshine, 
1999). Airborne hyperspectral data have been used to detect minerals and plant biochemicals that have distinct 
absorption features (Curran, 1994; Serrano et al., 2002) and species distribution (Dehaan and Taylor, 2002; Parker 
Williams and Hunt Jr., 2002).  EO-1 Hyperion is the first satellite-borne hyperspectral sensor to orbit the Earth, 
capable of recording spectral information superior to previous satellite sensors.  Hyperion differs from previous 
satellite sensors in that it records radiance in many narrow contiguous bands spanning the visible to the near infrared 
portion of the spectrum. Hyperion has a spatial resolution of 30 meters and records radiance in 220 bands spanning 
from the blue at 450 nm to the middle infrared at 2500 nm. Each band has a width of approximately 10 nm. 
 

1.1 Objectives 
This study aims to assess Hyperion for its ability to discriminate vegetation types based on species composition. The 
study focuses on the vegetation of coastal wetlands, namely temperate mangrove, saltmarsh and casuarinas forests. 
To the authors’ knowledge there are currently no studies that have tried Hyperion imagery for mapping mangrove 
species diversity and saltmarsh vegetation as yet. 
 
 
2 Study Site 
The study was conducted in the Minnamurra River estuary, New South Wales. 
The study area is located approximately between S 34˚ 36’ and 34˚37’ and 
between E 150˚50’ and E 150˚51’. The estuary sub-catchment area where this 
study is based is approximately 10 km2 (Figure 2.1). The estuary is in an 
advanced stage of infilling and the river follows a meandering channel 
characterized by three bends flowing around three sand deposits (Carne, 1991). 
The Minnamurra River estuary has been listed as a nationally important wetland 
in Australia because “it is a good example of a wetland type occurring within a 
biogeographic region in Australia” and because “the wetland supports native 
plant or animal taxa or communities which are considered endangered or 
vulnerable at the national level” (Environment Australia 2001).  
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Figure 2.1. Study site location 
in NSW, Australia. 



 

2.1 Vegetation 
The estuarine vegetation of the Minnamurra estuary has been described in a number of studies (Carne, 1991; 
Chafer, 1997). The vegetation in the muddy intertidal zone is composed of mangroves and saltmarsh (Figure 
2.2). A swamp-oak forest composed of casuarina trees extends to the landward side of the mangrove and 
saltmarsh vegetation, outside the tidal range (Chafer, 1997). A littoral forest is found further inland, which has a 
patchy distribution. The widths of the mangrove, saltmarsh and swamp oak forest areas are usually smaller than 
500 meters. Other cover types surrounding the estuary include: to the east, an extensive residential area, to the 
north a waste disposal depot and some artificial water bodies, and to the west, at higher elevations, an area 
composed of grasslands. 
 
Two mangrove communities have been identified in the temperate mangroves of Australia (Saenger et al., 1977). 
These are the A. marina low closed-forest and A. marina low woodland. The A. marina low closed-forest is a 
monospecific stand of A. marina trees that have a foliage cover of over 70 % and a height of less than 10 m. The A. 
marina woodland is composed of both A. marina trees and A. corniculatum shrubs. The term woodland corresponds 
to areas where the projective foliage cover of the upper stratum (A. marina) is very low (10-30 %) and the trees have 
a height of less than 10 m. A mid-stratum of both the shrub A. corniculatum and a ‘dwarf’ variation of A. marina 
become very extensive in this community. Similar to other temperate mangroves of New South Wales, the 
distribution of each community in the Minnamurra estuary is characterized by the formation of low closed-forests in 
the low intertidal zone, especially at the mouth of the estuary, while the low woodland develops to the landward side 
of the monospecific Avicennia marina forests (Carne, 1991).  
 
Saltmarsh communities develop to the landward side of the mangroves, with the succulent Sarcocornia quinqueflora 
dominant in the low marsh area, while the grass Sporobolus virginicus and the rush Juncus kraussii dominate in the 
middle marsh areas. The reed Phragmites australis becomes dominant in less saline areas of the saltmarsh. Swamp-
oak forests develop to the landward side of the mangrove and saltmarsh vegetation exclusively composed of the 
Casuarina spp. trees that grow extensively at higher elevations in Minnamurra.  

 
3 Methods 

3.1 Field data collection 
Eleven plots of 90 m × 90 m each (3×3 pixels) were taped in the field: two of Avicennia marina low closed-forest, 
three of A. marina low woodland, five of the saltmarsh vegetation and two of the casuarina forest. The plots were 
made facing north in order to ensure that the largest number of pixels possible covered the plots. The tape and 
compass method was used to tape the plots. Each corner was marked using 1.5 m high stack marked with flagging 
tape. A Trimble ProXL GPS with TDCI data logger was used to obtain the coordinates of each corner. The points 
were verified to correspond to each corner by plotting these over a geo-referenced aerial photograph and deciding if 

Figure 2.2. Estuarine vegetation of 
the Minnamurra River Estuary. 
(Source: Chafer, 1997) 



 

these coincided with each known point in the field. The coordinates of each corner were displayed in Arcview GIS 
and it was confirmed that the plots were rectangular and positioned in a south-north direction. 
 
The information collected for mangroves included, for each plot, the projective foliage cover of the upper and mid-
stratum, average height and the relative abundance of A. marina and A. corniculatum. The projective foliage cover 
was estimated using the gap-ratio method (McDonald et al., 1984) and the relative abundance of each species was 
estimated using the line-intercept method. In the saltmarsh, the relative abundance of each species was measured for 
each plot. In the casuarina forest, the canopy closure and height of trees was sampled and an average calculated in 
order to determine the structural heterogeneity of the forest in each plot. 
 

3.1.1 Structure and floristic of vegetation in each plot 
The A. marina low closed-forest was composed of 100% Avicennia marina trees of an average height from 4 to 
5.7 m in both plots. The projective foliage cover was approximately 50% in each plot and the gap between the 
crowns was 12 cm, while average crown diameter was from 250 to 1000 cm in each plot, indicating high canopy 
closure. The A. marina low woodland was composed of both A. marina and A. corniculatum species. In the low 
woodland vegetation, the relative abundance (aerial cover) of each species was over 50% for A. corniculatum and 
less than 30% for A. marina. The upper-stratum was dominated by isolated A. marina trees with a projective foliage 
cover of less than 10% and a mean gap between crowns of more than 7 m. The mid-stratum was dominated by 
A. corniculatum shrubs in all sites, with a projective foliage cover of approximately 40% in all sites. The saltmarsh 
vegetation was divided into low-marsh, dominated predominantly by the succulent herb Sarcocornia quinqueflora 
and the grass Sporobolus virginicus, and the mid/upper-stratum, dominated by Junkus kraussii, Phragmites australis 
and Sporobolus virginicus. The casuarina forest plots were composed of 100% Casuarina spp. trees, with both plots 
having the homogeneous forest formations. 
 

3.2 Satellite hyperspectral imagery acquisition and characteristics 
The EO-1 Hyperion image was acquired by USGS (United States Geological Survey)/EROS Data Center, Sioux 
Falls, South Dakota, USA, on 27 July 2002 at about 10:30 a.m. (local time). The Hyperion data consist of a data 
‘cube’ represented by 242 spectral bands acquired over an array of 256 pixels (width). The number of lines (length) 
varies with the data acquisition event and the image is built up with the forward motion of the sensor (Jupp et al., 
2002). The image acquired over the study area was 7.7 km wide and 185 km long. 
 
3.3 Pre-processing 
3.3.1 Atmospheric and geometric correction 
All pre-processing and analysis of the EO-1 Hyperion imagery was done using the image processing system ENVI® 
(Environment for Visualizing Images, Research Systems, Inc.). The EO-1 Hyperion image was atmospherically 
corrected in order to convert the data from at-sensor-radiance to apparent reflectance. The “coastal Waters and 
Ocean MODTRAN-4 Based ATmospheric correction” (c-Wombat-c) implemented in IDL/ENVI® was used. The c-
WOMBAT-c applies a full MODTRAN-4 atmosphere parameterization and characterization to run the inversion 
from radiance to reflectance. The parameters correspond to very dry and clear atmospheric conditions without 
aerosol contents. An inspection of a false color composite agreed with these parameters since the image appeared 
very contrasted and without hazy effects.  A spatial subset of 4 km wide by 5.7 km long was selected from the image 
to define the Minnamurra estuary study site, including the upland areas and coastal waters. The image was 
geometrically corrected using an image-to-image registration procedure using an ortho-rectified georeferenced aerial 
photograph of the area as reference. The image was registered to the Australian Map Grid 66 (AMG) coordinate 
system using 6 control points obtained from the photograph. A polynomial nearest-neighbor algorithm was applied. 
In this method, the pixel that has its center closer to the point located in the image is transferred to the corresponding 
display grid location (Richard and Jia, 1999). This technique does not alter pixel brightness values. The average 
RMS was 0.259 or within 1 pixel. Vegetation and cadastral vector files of the area were overlaid to observe the 
correspondence between the image and the geo-referenced files. After inspecting a number of points it was 
concluded that the registration was satisfactory. 

3.3.2 Band selection 
Of the 242 bands only 198 are calibrated to radiance while the rest are set to zero (Jupp et al., 2002). The 198 bands 
were viewed through the animation tool in order to select noise-free bands for further processing. Bands 



 

corresponding to water absorption features were very noisy containing no spatial information and were subsequently 
excluded from the data set. Streaking was apparent in some bands from both the VNIR and SWIR regions. Streaking 
is presented as vertical lines related to the along-track effects of push-broom systems (Jupp et al., 2002) and are 
more apparent in low SNR (signal to noise ratio) bands. The streaking effect was pronounced in the SWIR region, 
specifically between 2000 nm and 2500 nm. De-streaking was initially attempted, however, the resulting images 
appeared worse than the originals. Consequently only bands 207 and 208 were retained from the 200-2500 nm 
region. All other bands deemed to have unacceptable noise or streaking were also removed. In total 105 bands were 
selected for further use. 
 
3.4 Image analysis 
3.4.1 Mixture Tuned Matched Filtering (MTMF) 
The Mixture Tuned Matched Filtering™ (MTMF) is a technique that works by partially unmixing pixel spectra 
according to a user-defined endmember. In this procedure, the response of the reference endmember spectra is 
matched to the pixel spectra by maximizing the endmember response and masking the background unknown 
response (ENVI, 2001). The results indicate the degree to which the endmember was matched to the pixel spectra 
and the approximate sub-pixel response of the endmember (ENVI, 2001). An image is produced where bright pixels 
indicate high abundance of the endmember and therefore a high MF (matched filtering) score. An infeasibility result 
is also produced that represents the ‘false positives’ and assigns high infeasibility scores values to pixels erroneously 
matched to the endmember (see ENVI 2001 for details). This approach has been used to determine biochemical 
composition of leaves using data sets of leaf spectral response (Pinzon et al., 1998) and species discrimination in 
saltmarsh vegetation (Zhang et al., 1996) and the discrimination of a weed species (Parker Williams & Hunt Jr., 
2002) using AVIRIS data. In this study, the technique was applied using each mangrove species as endmembers. 

3.4.1.1 Data reduction and endmember selection for the mangrove species 
Dimensionality reduction refers to the process by which the main components attributing to the spectral variance of 
the data set are identified. The aim is to reduce the information present in hyperspectral imagery so that it can be 
displayed in a minimized form without any alteration to the original data (Keshava & Mustard, 2002). The 
procedure used to achieve this was the Minimum Noise Fraction (MNF) implemented in ENVI®. The MNF 
transformation decomposes the data into the main components contributing most of the spectral variance and also 
accounts for the noise present in the data (Keshava & Mustard, 2002). The noise is first estimated resulting in a 
noise covariance matrix, which is then used to decorrelate and rescale the noise in the data. In the transformed data 
the noise has unit variance and no band-to-band correlation. A PCA is then applied to the noise-whitened data 
(ENVI, 2001).  Two approaches were undertaken to find endmembers representative of each species. For the A. 
marina dominated low closed-forest community the endmember was selected from regions of interest (ROI) 
corresponding to the two plots for which field data indicated these were monospecific patches of Avicennia marina. 
For the low woodland community the endmembers were selected from the pixel cloud created with MNF bands 1, 8 
and 9. The MNF band 9 showed that brighter pixels corresponded to Site 1 where Aegiceras corniculatum was 
dominant in terms of ground cover and projective foliage cover.  

3.4.1.2 MTMF of the mangrove species and display 
The MF score band and the infeasibility band were used to create a 2-dimensional scatter plot in order to select 
pixels that matched well with the reference endmember. Pixels of low infeasibility and MF score higher than 
approximately 0.25 were highlighted. These pixels corresponded to areas where the endmember was recorded as 
present at a sub-pixel level at a proportion according to the MF score (where 1 = 100 %). The maps were compared 
to the plots taped in the field for each community and to areas visited in the field that contained these communities.   
The MTMF results were assessed by correlating the ground-cover measurements taken for each site with the 
estimated cover of each species at the sub-pixel level. The Pearson correlation coefficient (r2) was calculated to 
determine the correlation between the predicted and actual species ground cover. The correlation was applied to the 
A. corniculatum endmember only-the reason being that the A. marina endmember resulted in high MF scores and 
high infeasibility values for some of the low woodland areas making the data unsuitable for the comparisons 
between actual and predicted species cover. 

3.4.2 Supervised classification- Spectral Angle Mapper (SAM) 
In the spectral angle mapper (SAM) classification, pixels are considered vectors in n-dimensional space according to 
their DN values for each band, where the number of dimensions is equal to the number of bands (Kruse et al., 1993). 



 

SAM classifies pixels according to the angular distance between two vectors, the approach ignores vector lengths 
and is therefore unaffected by illumination effects (Mustard and Sunshine, 1999). Vectors with small angles are 
considered spectrally similar during the classification and the user must define the minimum spectral angle threshold 
to which all angles are compared. In this case the angle was set to 0.1 radians for all classes. 
 
Regions of interest (ROI) were created for each community according to the position of their respective plot taped in 
the field. Additional spectral classes were also created using the information obtained during the endmember 
selection and field knowledge. A false color composite (RGB:50,33,17) was used to define other spectral classes, 
with all classes subsequently plotted in 2-to 3-dimension scatter plots using the original image bands. The visible 
and near infrared bands were used as vegetation features were of greatest interest. Pixels that plotted at the 
extremities of the spectral clouds were deleted from the class. The maximum, minimum, mean and standard 
deviation signature of each class were also calculated. These were inspected to ensure that the spectral variance was 
normal for each class. Supervised classifications were run using the original classes created, which included all 6 
communities described in previous sections, and the newly created classes.  

3.4.2.1 Accuracy assessment 
The accuracy of the resulting images was assessed by calculating confusion matrices that show the level of accuracy 
of each classified image (Congalton & Green, 1999). Producer’s and user’s accuracies were calculated for each 
class, as well as the errors of omission and commission, overall accuracy and kappa coefficients. For each class 
additional non-biased regions of interest (ROI) were selected and used to calculate the statistics. For the mangrove 
and saltmarsh classes the regions of interest were defined by field checking carried out on the 20 and 25 November 
2002. During field visits a Global Positioning System (GPS) was used to record the coordinates of the areas of 
interest. For the casuarina forest and littoral forest the ROIs were defined from maps already produced for the area 
by Chafer (1997) and Carne (1991) (not shown). For the other classes, defined from spectral analysis, false colour 
composites and scatter plots, the additional ROIs used for the accuracy assessment were defined from the false 
colour composite. The spectral signatures of these regions were inspected in order to ensure the pixels belonged to 
the relevant classes. The water classes, such as ‘ocean’ or ‘river’, were not included in the accuracy assessment. 
These classes were not correctly classified by SAM and it was determined that inclusion of the water classes would 
decrease the overall accuracy of the SAM classification. 
 
4 Results 
4.1.1 MTMF (Mixture Tuned Matched Filtering)  
The mean spectral reflectance of the A. marina and A. corniculatum endmembers are shown in Figure 4.1. The 
spectral reflectance of the A. marina endmember is higher in the middle infrared than for the A. corniculatum 
endmember. Spectral reflectance for the A. corniculatum endmember is higher in the visible, from the green and red 
(559 nm to 661 nm) and in the left shoulder of the near infrared plateau from 750 nm to 1100 nm. Both endmembers 
have high absorbance in the chlorophyll band at approximately 675 nm. Figure 4.2 shows the scatter plot of the 
MNF bands 1, 8 and 9 and the pixels of A. corniculatum endmember that plotted to one of the corners. 
 
The distribution of the A. marina endmember is shown in Figure 4.3. Pixels that resulted in low infeasibility values 
and high MF scores ranging from 0.35 to 1.35 are painted green. Colored pixels on the image represent areas where 
the A. marina endmember has been identified as present. The distribution of the A. marina endmember corresponds 
to Sites 4 and 5 (shown with an arrow) and other areas of the low-intertidal zone closer to the mouth of the estuary 
(circled) that have been visited and confirmed as being dominated by A. marina trees or shrubs. High MF scores and 
infeasibility values were recorded for some low woodland pixels. These areas were not highlighted since the MF 
scores are in reality ‘false positives’ (Boardman, 1998; ENVI, 2001) and do not match correctly with the A. marina 
endmember. The distribution of the A. corniculatum endmember is shown in Figure 4.4. The sub-pixel abundance 
for this species agrees with the distribution of field sites corresponding to the low woodland community. The 
distribution also extends to the upstream sections, over the low-intertidal zone. Correlation analysis between the 
actual and predicted ground cover of A. corniculatum indicated a high correlation between the predicted and actual 
abundance of the species (r2=0.879). 
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Figure 4.1. Spectral reflectance of the endmembers used in the MTMF 
of the two mangrove species; Avicennia marina (white) and Aegiceras 
corniculatum (black), obtained from the EO-1 Hyperion image subset of 
the Minnamurra estuary. 

Figure 4.2. Scatter plot of MNF bands 1, 8 and 9 obtained from the 
EO-1 Hyperion image subset of the Minnamurra estuary (left) and 
the image subset of the area (right). Position of Aegiceras 
corniculatum endmember in the scatter plot (red pixels) and its 
spatial distribution in the area (red). A. corniculatum pixels 
corresponding to one of the plots (circled). 

  

  

Figure 4.3. Distribution of the Avicennia marina endmember (green) 
obtained from the MTMF applied to the EO-1 Hyperion subset of the 
Minnamurra estuary (left). The image shows the coordinates of all sites 
(blue dots), low closed-forest (white and black arrow), and areas 
confirmed to be composed of A. marina (circled). Corresponding pixels 
in the scatter plot (right), showing high MF (matched filtering) scores 
and low infeasibility values (green). 

Figure 4.4. Distribution of the Aegiceras corniculatum endmember 
(red) obtained from the MTMF applied to the EO-1 Hyperion subset 
of the Minnamurra estuary (left). Shows: coordinates of all sites (blue 
dots), low woodland plots (arrows), and areas confirmed to be 
composed of A. corniculatum (circled). Corresponding pixels in the 
scatter plot (right), showing high MF (matched filtering) scores and 
low infeasibility values (red). 

 

4.1.2 Supervised classifications (SAM) 
The resulting map from the supervised classification agreed with the distribution of land-cover types at the 
landscape scale. Major cover classes, such as the urban areas, grasslands and littoral forests, were mapped in 
accordance to their distribution. In addition, the intertidal vegetation was discriminated well from the rest of the 
vegetation in the area. Figure 4.5a shows the distribution maps produced for the aggregated saltmarsh and mangrove 



 

classes using the SAM classification and the already created map for the area. Table 4.1 shows the confusion matrix 
created with the mangrove and saltmarsh classes aggregated. 
 
Table 4.1. Confusion matrix for the distribution map corresponding to Fig 4.5a, produced with the SAM applied to the EO-1 
Hyperion subset of the Minnamurra estuary. All aggregated classes. 

 

 
The confusion matrix corresponding to Figure 4.5b (Table 4.2) shows the mangrove class and casuarina forest class 
were accurately discriminated with producer’s accuracies of 62.47 % and 67.29%, respectively. The saltmarsh class 
recorded lower levels of producer’s accuracy of 42.22%. The user’s accuracies were higher, approximately 90 % for 
all three wetland vegetation classes, however, the saltmarsh vegetation was erroneously mapped at high elevations 
as it was confused with the upland grasses and urban areas.  The distribution maps produced by the SAM of the two 
mangrove classes are shown in Figure 4.5b. The distribution of low closed-forests is restricted to the mouth of the 
estuary and to the low-intertidal zone, while the distribution of low woodlands is more extensive in the low-
intertidal zone upstream and in the upper intertidal zone downstream. The producer’s accuracy for the low closed-

Overall accuracy = 76.74 % Kappa Coefficient = 0.73 
 Ground Truth (pixels)       

Class bare 
ground 

dry 
grass mangroves casuarina 

forest saltmarsh littoral 
forest urban green 

grass Total User's 
 (%) 

Commission  
(%) 

unclassified 16 2 93 78 27 25 13 2 256   
bare ground 87  2    2 1 92 94.57 5.43 

dry grass 1 86      2 89 96.63 3.37 
mangroves   257 11 6 1   275 93.45 6.55 

casuarina forest   20 113 2 10   145 77.93 22.07 
saltmarsh   1 2 38    41 92.68 7.32 

littoral forest   3 5  90   98 91.84 8.16 
urban 16  4 4 17 1 301 1 344 87.5 12.5 

green grass  2  1  12  292 307 95.11 4.89 
Total 120 90 380 214 90 139 316 298 1647   

Producer's  (%) 72.5 95.56 67.63 52.8 42.22 64.75 95.25 97.99    
Errors of Omission (%) 27.5 4.44 32.37 47.2 57.78 35.25 4.75 2.01    

Unclassified (%) 13.33 2.22 24.47 36.45 30 17.99 4.11 0.67 15.54   

Figure 4.5. Distribution maps resulting from a SAM classification applied to the EO-1 Hyperion image subset of 
the Minnamurra River Estuary, NSW. (a) aggregated mangrove and saltmarsh classes (b) not aggregated mangrove 
and saltmarsh classes. Each image represents an area of 4 km by 5.7 km.

(a) (b)



 

forest and the low woodland classes were 57.69 % and 56.67 %, respectively. The confusion occurs mainly between 
the two mangrove classes (Table 4.2). For example, some pixels corresponding to the low closed-forests were 
classified as low woodland, while some pixels known to contain mainly A. corniculatum shrubs were classified as 
low closed-forest (Table 4.2). The classifier produced good results, especially considering that around 10 % of the 
pixels in both classes remained unclassified. 
 

Table 4.2. Confusion matrix corresponding to Figure 4.5b obtained for the SAM classification. Showing the discrimination of the 
two mangrove communities, low-marsh, mid/upper-marsh and casuarina forest.  

Overall Accuracy=66.39 % Kappa Coefficient = 0.61 
 Ground Truth (pixels)          

Class bare 
ground 

dry 
grass 

low-closed 
forest 

low 
woodland 

low-
marsh

mid/upper
-marsh 

green 
grass urban littoral 

forest 
casuarina 

forest Total User's  
(%) 

Commission 
(%) 

unclassified 50 3 16 11 3 0 3 18 2 2 108   
bare ground 33          33 100 0 

dry grass 9 80      8   97 82.47 17.53 
low-closed 

forest   60 44 1 1    40 146 41.1 58.9 

low woodland   24 85     3 17 129 65.89 34.11 
low-marsh 2    4 26 27 16   75 5.33 94.67 
mid/upper 

marsh  5   3 19 3   1 31 61.29 38.71 

green grass      2 237 24 14 20 297 79.8 20.2 
urban 5 2      250  1 258 96.9 3.1 

littoral forest       6  85 10 101 84.16 15.84 
casuarina forest   4 10 1  22  35 123 195 63.08 36.92 

Total 99 90 104 150 12 48 298 316 139 214 1470   
Producer's 

accuracy (%) 33.33 88.89 57.69 56.67 33.33 39.58 79.53 79.11 61.15 57.48    

Errors of 
Omission (%) 66.67 11.11 42.31 43.33 66.67 60.42 20.47 20.89 38.85 42.52    

Unclassified 
(%) 50.51 3.33 15.38 7.33 25 0 1.01 5.7 1.44 0.93 7.35   

 
5 Conclusion 
The MNF transformation applied to the Hyperion imagery showed that MNF band 9 corresponded with the 
distribution of A. corniculatum, especially in areas of high cover. The MTMF results obtained by using the A. 
corniculatum endmember agreed strongly with the distribution of this species. Its presence was recorded in the three 
plots and in other areas visited and confirmed (Fig. 4.4). The correlation analysis resulted in high positive 
correlation between the predicted cover of the A. corniculatum endmember and the actual cover measured in the 
field (r2=0.879). Similarly the distribution obtained for the A. marina endmember showed that the distribution 
agreed with the two low closed-forest plots and other areas in the low-intertidal zone around the mouth of the 
estuary (Fig. 4.3), where this species has a high cover and forms extensive monospecific stands. 
 
In mangrove forests, correlations have been found between the projective foliage cover (and leaf area index (LAI)) 
and the red and near infrared canopy reflectance (Jensen et al. 1991; Ramsey & Jensen, 1996; Green et al., 1997), 
where increases in foliage cover result in increases of near infrared reflectance. However, no correlations have been 
established between species cover and any of the broad bands used by the most common satellite-borne sensors 
(Jensen et al., 1991; Ramsey & Jensen, 1996). Previous studies have established that mangrove species could not be 
discriminated with broad-band satellite sensors because of the low spectral and spatial resolutions (Green et al., 
1996; 1998). Therefore, zonation has been mapped according to the structure of the vegetation in each zone (Blasco 
et al., 1998; Rasolofoharinoro et al., 1998) and the reflectance in the red and near infrared bands. The present study 
indicates that the improved spectral resolution of Hyperion, which allows for the application of more sophisticated 
methods of image analysis such as the MTMF, results in a good discrimination of the two mangrove species 
assessed in this study, despite the apparently low SNR (1:100) of the sensor (Kruse et al., 2001) and 30 m pixels. 
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